欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

您的位置:中國(guó)博士人才網(wǎng) > 博士后招收 > 海外博士后招收 > 英國(guó)利茲大學(xué)2023年招聘博士后職位(選擇建模,機(jī)器學(xué)習(xí)和數(shù)學(xué)心理學(xué),3個(gè)職位)

關(guān)注微信

英國(guó)利茲大學(xué)2023年招聘博士后職位(選擇建模,機(jī)器學(xué)習(xí)和數(shù)學(xué)心理學(xué),3個(gè)職位)

時(shí)間:2023-09-05來(lái)源:中國(guó)博士人才網(wǎng) 作者:佚名

英國(guó)利茲大學(xué)2023年招聘博士后職位(選擇建模,機(jī)器學(xué)習(xí)和數(shù)學(xué)心理學(xué),3個(gè)職位)

利茲大學(xué)(University of Leeds),是一所位于英國(guó)利茲的公立綜合性研究型大學(xué)、世界百?gòu)?qiáng)名校,英國(guó)紅磚大學(xué),是羅素大學(xué)集團(tuán),世界大學(xué)聯(lián)盟、國(guó)際大學(xué)氣候聯(lián)盟、歐洲大學(xué)協(xié)會(huì)、英聯(lián)邦大學(xué)協(xié)會(huì)、中英大學(xué)工程教育與研究聯(lián)盟、RENKEI、N8大學(xué)聯(lián)盟、白玫瑰大學(xué)聯(lián)盟成員。利茲大學(xué)商學(xué)院獲AACSB、EQUIS和AMBA三重認(rèn)證,是全球商學(xué)院網(wǎng)絡(luò)、“一帶一路”商學(xué)院聯(lián)盟、中歐商校聯(lián)盟成員。

Research Fellow in Choice Modelling, Machine Learning and Mathematical Psychology (3 posts)

University of Leeds

Job Description

Do you have research expertise in Choice Modelling, Machine Learning and/or Mathematical Psychology? Are you interested in conducting methodological research to bridge these disciplines? Would you like to implement novel methodologies to advance the state-of-the-art in behavioural modelling and make a real-world impact?

Understanding the mechanisms and the drivers behind people’s choices has been the focal point of a range of academic disciplines and a key component in policy making, for example aiming to shift behaviours for a more sustainable future. Mathematical process models from psychology, behavioural econometric models and data-driven machine learning algorithms have been developed in parallel with only limited knowledge spillovers among them, but with the same core goal of understanding individual decision making.

Models from Mathematical Psychology focus on understanding the processes leading to decisions. These are often described as causal models aiming to answer how an individual reached a certain choice and understand the interrelated processes behind that. Those models, however, are rarely applied outside a controlled lab setting, with only a handful of real-world applications.

Algorithms and techniques from Machine Learning, initially originating from Computer Science, are steadily gaining ground in almost every discipline due to their ability to efficiently find patterns in complex data. These methods are mostly concerned with what the outcome is and seek to closely replicate the patterns that led to the observed choices. Nonetheless, the general lack of interpretability in their outputs hinder their more widespread adoption for policy making, where a more robust statistical association between the target and explanatory variables is required.

Finally, Choice Modelling is a field of econometrics that sits between the two aforementioned disciplines aiming to answer which factors influence the observed choices and to what extent, as well as what it would take to shift to a different choice. Choice models have been used extensively by policy makers and industry since the early theoretical advancements of 1970s. Despite their widespread use, however, these models are not able to provide clear links between the observed choices and the actual causal processes behind them as do models from Mathematical Psychology. Furthermore, they are arguably increasingly limited in their application to more complex data compared to Machine Learning algorithms, a theme that will continue to exacerbate with the advent of Big Data.

With this in mind, the synergy of those three disciplines and the development of new state-of-the-art modelling frameworks holds the promise of providing new Data-Driven Behavioural Models (DDBMs) combining the strengths and addressing the distinct limitations of the three areas. The development of DDBMs will come at a time when big data sources constantly challenge traditional modelling approaches. Additionally, the growth in human-machine interactions, such as with the advent of autonomous vehicles, will require the development of AI consistent with human behaviour to guarantee public safety and wider adoption in the market.

The Choice Modelling Centre at the Institute for Transport Studies seeks to hire an early career researcher to take part in the ERC-funded project “SYNERGY”. The project’s aim is to combine key techniques from Mathematical Psychology, Choice Modelling and Machine Learning, and help to develop new approaches. The role will involve working at the cutting edge of the three aforementioned areas of research for developing modelling frameworks that will actively shape future policy making. The successful candidate will need to demonstrate sufficient theoretical and technical knowledge of at least one of the three key disciplines involved in the project and possess an open mind to new ideas and approaches. Knowledge of a programming language, with an emphasis on R and/or Python, is also strongly advised.

As a member of the team, you will be based at the Institute for Transport Studies (ITS) where you will work with Professor Stephane Hess and other researchers in the Choice Modelling Centre (CMC), drawing also on expertise in its global network. You will become part of a highly productive team, have the opportunity to work with the technically advanced driving and pedestrian simulators of the University of Leeds and take part in international conferences for the purpose of disseminating the findings of the research. You are expected to contribute to methodological research on bridging choice modelling, mathematical psychology and machine learning in the context of transport, health and environment. As this is a multi-faceted research project, you will be able to contribute to individual components of the work as well as helping to shape the direction of the research according to your own interests and background. You will be expected to take academic ownership of large parts of the programme and make a lasting contribution to the field.

To explore the post further or for any queries you may have, please contact:

Stephane Hess, Professor of Choice Modelling, Director of the Choice Modelling Centre

Email: s.hess@leeds.ac.uk

為防止簡(jiǎn)歷投遞丟失請(qǐng)抄送一份至:boshijob@126.com(郵件標(biāo)題格式:應(yīng)聘職位名稱(chēng)+姓名+學(xué)歷+專(zhuān)業(yè)+中國(guó)博士人才網(wǎng))

中國(guó)-博士人才網(wǎng)發(fā)布

聲明提示:凡本網(wǎng)注明“來(lái)源:XXX”的文/圖等稿件,本網(wǎng)轉(zhuǎn)載出于傳遞更多信息及方便產(chǎn)業(yè)探討之目的,并不意味著本站贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,文章內(nèi)容僅供參考。

相關(guān)文章
欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

      
      

          精品欧美久久久| 国产乱码精品1区2区3区| 欧美精选在线播放| 色一情一乱一乱一91av| 不卡一二三区首页| 成人午夜伦理影院| zzijzzij亚洲日本少妇熟睡| 成人免费毛片app| www.亚洲激情.com| 91浏览器打开| 欧美性猛片aaaaaaa做受| 精品视频一区二区不卡| 欧美日韩一区二区欧美激情| 欧美日本在线观看| 精品久久久影院| 中文字幕乱码久久午夜不卡| 综合电影一区二区三区| 亚洲免费在线播放| 亚洲va国产天堂va久久en| 日韩国产高清影视| 国产一区二区在线免费观看| 国产盗摄精品一区二区三区在线| 风间由美一区二区av101| 91网站视频在线观看| 在线视频你懂得一区二区三区| 欧美日韩一区二区不卡| 日韩欧美亚洲另类制服综合在线| 久久毛片高清国产| 18成人在线观看| 视频一区视频二区在线观看| 韩国av一区二区三区四区| 成人免费黄色大片| 欧美色国产精品| 精品美女被调教视频大全网站| 亚洲激情图片qvod| 日本中文字幕不卡| 国产成人在线视频网站| 一本久久精品一区二区| 欧美一区二区三区视频| 国产日产欧美一区| 性久久久久久久久| a级高清视频欧美日韩| 91精品国产91综合久久蜜臀| 国产精品美女久久福利网站| 日韩一区精品视频| 色综合欧美在线视频区| 久久久久久一二三区| 亚洲午夜免费福利视频| 国产成人综合在线观看| 欧美日韩国产美| 国产精品久久福利| 激情偷乱视频一区二区三区| 欧美日韩一区视频| 亚洲欧美日韩国产综合在线| 激情久久五月天| 在线播放/欧美激情| 一区二区中文字幕在线| 精品亚洲国内自在自线福利| 欧美日韩亚洲不卡| 最新热久久免费视频| 国产盗摄一区二区三区| 日韩免费高清视频| 日韩成人av影视| 欧美伊人久久大香线蕉综合69| 欧美国产日韩在线观看| 久久电影网站中文字幕| 69堂成人精品免费视频| 亚洲动漫第一页| 色综合激情久久| 自拍偷拍国产精品| 99在线精品观看| 国产精品久久久久久久浪潮网站| 国产酒店精品激情| 久久久99免费| 国产成人精品免费在线| 久久综合色鬼综合色| 黄色成人免费在线| 2020国产精品久久精品美国| 精品亚洲成a人| 国产亚洲一区二区三区| 国产成人在线色| 久久天堂av综合合色蜜桃网| 国产精品99久久久久久宅男| 久久久99精品免费观看| 国产99久久精品| 国产精品美女久久久久久久久久久 | 国产一区二区三区在线观看精品| 日韩精品专区在线| 久久精品国产亚洲a| 精品免费日韩av| 国产成人av资源| 亚洲天天做日日做天天谢日日欢| 色综合网站在线| 亚洲亚洲人成综合网络| 91麻豆精品国产91久久久使用方法| 日韩精品每日更新| 精品日韩一区二区| 成人国产在线观看| 夜夜操天天操亚洲| 欧美一区二区视频免费观看| 日本欧美加勒比视频| 日韩精品资源二区在线| 国产成a人亚洲精| 亚洲天天做日日做天天谢日日欢| 欧美曰成人黄网| 美女一区二区在线观看| 国产欧美日韩亚州综合| 色综合久久88色综合天天| 日本伊人色综合网| 欧美激情在线看| 欧美乱熟臀69xxxxxx| 国产精品系列在线播放| 亚洲毛片av在线| 欧美第一区第二区| 99re热视频这里只精品| 热久久久久久久| 最新欧美精品一区二区三区| 欧美日韩在线播放| 国产一区二区三区免费| 亚洲精品乱码久久久久久| 日韩欧美国产一区二区三区| 成人综合婷婷国产精品久久免费| 亚洲综合色自拍一区| 久久久综合网站| 欧美三级视频在线观看| 国产激情一区二区三区| 天堂一区二区在线| 亚洲欧美成人一区二区三区| 日韩欧美国产综合在线一区二区三区| 不卡区在线中文字幕| 日本aⅴ精品一区二区三区| 国产精品久久二区二区| 精品国产sm最大网站| 欧美日韩综合一区| 99久久er热在这里只有精品66| 99久久综合色| 久久99国产精品免费网站| 亚洲国产婷婷综合在线精品| 国产日产亚洲精品系列| 欧美大黄免费观看| 在线播放日韩导航| 欧美色网站导航| 99精品在线观看视频| 国产成人精品在线看| 麻豆91在线播放| 亚洲1区2区3区4区| 亚洲天堂精品在线观看| 久久久久国产一区二区三区四区 | 亚洲日本丝袜连裤袜办公室| 久久精品日产第一区二区三区高清版 | 午夜影视日本亚洲欧洲精品| 最新国产成人在线观看| 欧美国产精品劲爆| 欧美极品少妇xxxxⅹ高跟鞋| 久久综合久久综合久久| 欧美一区二区三区色| 91精品国产综合久久久蜜臀图片| 日本丶国产丶欧美色综合| 99久久精品情趣| 91蜜桃免费观看视频| 成人a区在线观看| 成人精品视频一区| 国产·精品毛片| 成人综合婷婷国产精品久久免费| 国产盗摄一区二区三区| 成人午夜又粗又硬又大| 不卡影院免费观看| 97超碰欧美中文字幕| 一本久久精品一区二区| 欧美性大战久久| 欧美一区二区视频在线观看2022| 欧美一区二区三区人| 欧美精品一区在线观看| 国产欧美精品一区| 国产精品久久久久婷婷| 亚洲黄色小视频| 日韩av电影一区| 国产一二精品视频| 99re66热这里只有精品3直播| 色综合久久久久| 欧美一级生活片| 国产亚洲精品资源在线26u| 国产日韩欧美精品一区| 亚洲欧美一区二区视频| 亚洲综合自拍偷拍| 麻豆91精品91久久久的内涵| 国产成人精品www牛牛影视| www.亚洲人| 欧美麻豆精品久久久久久| 337p日本欧洲亚洲大胆色噜噜| 欧美国产日韩精品免费观看| 亚洲一区二区三区四区不卡| 亚洲成人av一区二区三区| 久久国产精品99久久人人澡| 东方欧美亚洲色图在线| 欧美日韩久久久一区| 26uuu国产电影一区二区| 亚洲欧美在线观看| 捆绑调教一区二区三区| 粗大黑人巨茎大战欧美成人|