欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

您的位置:中國博士人才網(wǎng) > 博士后招收 > 海外博士后招收 > 瑞士蘇黎世大學生物醫(yī)學領域的機器學習博士后職位

關(guān)注微信

瑞士蘇黎世大學生物醫(yī)學領域的機器學習博士后職位

時間:2020-08-17來源:中國博士人才網(wǎng) 作者:佚名

瑞士蘇黎世大學生物醫(yī)學領域的機器學習博士后職位

Department of Quantitative Biomedicine

Postdoc Opening in Machine Learning in Biomedicine

The University of Zurich together with the University Hospital of Zurich are embarking on a concerted effort to develop informatics programs to advance biomedical research using cutting edge computational approaches. As part of these efforts, the Krauthammer research group investigates topics in clinical data science and translational bioinformatics, such as knowledge discovery from Big Data sources (Electronic Medical Record), development of Natural Language processing, information retrieval and extraction routines, as well as the analysis of human Omics data. The group is headed by Prof. Michael Krauthammer and is part of the Department of Quantitative Biomedicine (DQBM).

Your responsibilities

For this position, we are looking for motivated PostDoc candidates who are interested in applying their computational skills to medical as well as biological problems. An example of Machine Learning (ML) in biology is our latest work on genome editing tools (base editors) for basic research and gene therapy. We developed BE-DICT 1), an attention-based deep learning algorithm capable of predicting base editing outcomes with high accuracy.

An example of ML in healthcare is our work on time series analysis for patient readmission prediction. In this work 2), we explored the systematic application of neural network models for predicting 30 days all-cause readmission after discharge from a HF hospitalization. And more recently, we are focused on the analysis of patient trajectories (i.e. using patients' medical history) and "patient similarities" (i.e. patient similarity assessment on longitudinal health data) for care pathway/knowledge discovery, and personalized outcome prediction 3). Our goal is to develop state-of-the- art approaches and build best-in-class methods to capitalize on digital clinical information to automatically compare, analyze and visualize complex longitudinal patient journeys focusing on the concept of patient journey similarity. This involves building decision support systems powered by predictive algorithms for guiding patient therapy across all disease stages, the assessment of treatment effects using counterfactual inference and the identification of causal mechanisms driving disease progression.

1) Marquart, K. F., Allam, A., et al. Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. bioRxiv 2020.07.05.186544 (2020) doi:10.1101/2020.07.05.186544.

2) Allam, A., Nagy, M., Thoma, G. & Krauthammer, M. Neural networks versus Logistic regression for 30 days all-cause readmission prediction. Sci. Rep. 9, 9277 (2019).

3) Allam, A., Dittberner, M., Sintsova, A., Brodbeck, D. & Krauthammer, M. Patient Similarity Analysis with Longitudinal Health Data. (2020). https:// arxiv.org/abs/2005.06630

Your profile

  PhD degree in computer science (focused on machine learning), optimization, statistics, applied math or closely related discipline.

  Strong publication record with at least one first-author paper in top-tier conferences (such as NeurIPS, ICML , AISTATS, AAAI, ICLR, etc.)

  Proficient in Python and the scientific computing stack (SciPy, Numpy, Scikit- learn, pandas)

  Proficient in one of the deep learning frameworks (PyTorch, Tensorflow)

What we offer

  Access to state-of-the-art infrastructure (computational resources), clinical datasets and medical expertise domain-knowledge (excellent medical doctors and research scientists)

  Ability to make a real and tangible impact in healthcare research

  Solve real-world problems and improve hospital-related process and workflow

  Stimulating research environment and a place to grow academically and professionally

  Outstanding working conditions at the University of Zurich.

Place of work

Zurich, Switzerland

Start of employment

Employment start date to be mutally agreed.

為防止簡歷投遞丟失請抄送一份至:boshijob@126.com(郵件標題格式:應聘職位名稱+姓名+學歷+專業(yè)+中國博士人才網(wǎng))

中國-博士人才網(wǎng)發(fā)布

聲明提示:凡本網(wǎng)注明“來源:XXX”的文/圖等稿件,本網(wǎng)轉(zhuǎn)載出于傳遞更多信息及方便產(chǎn)業(yè)探討之目的,并不意味著本站贊同其觀點或證實其內(nèi)容的真實性,文章內(nèi)容僅供參考。

欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

      
      

          麻豆久久久久久久| 国产精品美日韩| 国产一区二三区| 亚洲sss视频在线视频| 亚洲人成电影网站色mp4| 欧美极品少妇xxxxⅹ高跟鞋 | 久久99精品久久只有精品| 日韩精品电影一区亚洲| 视频在线观看一区二区三区| 美女视频黄 久久| 久久国产精品99精品国产| 裸体歌舞表演一区二区| 玖玖九九国产精品| 成人污视频在线观看| 色综合咪咪久久| 欧美精品乱人伦久久久久久| 欧美一级片在线| 久久久精品tv| 亚洲精品国产成人久久av盗摄| 一区二区三区四区蜜桃 | 久久午夜老司机| 综合色中文字幕| 婷婷国产在线综合| 久久99精品视频| 成人av中文字幕| 欧美日韩在线三级| 久久久国产精品午夜一区ai换脸| 亚洲欧洲国产日韩| 首页亚洲欧美制服丝腿| 国产suv精品一区二区三区| 91亚洲精品乱码久久久久久蜜桃| 欧美日韩色一区| 国产亚洲精品久| 亚洲网友自拍偷拍| 国产一区二区三区在线观看免费视频| 99久久精品国产毛片| 欧美一区二区免费观在线| 国产婷婷色一区二区三区四区| 亚洲精品videosex极品| 黑人精品欧美一区二区蜜桃 | 久久久久久久久久美女| 亚洲韩国一区二区三区| 国产成人a级片| 7777女厕盗摄久久久| 久久精品男人天堂av| 日韩精品一二区| 成人h动漫精品一区二区| 日韩西西人体444www| 亚洲视频在线一区观看| 国产精品一区二区久激情瑜伽| 欧美自拍偷拍午夜视频| 亚洲国产岛国毛片在线| 久久精品国产精品亚洲精品 | 欧美韩国日本一区| 日本美女一区二区| 欧美性一区二区| 中文字幕一区二区三区不卡| 国产精品白丝av| 日韩欧美国产综合| 天堂va蜜桃一区二区三区| 色噜噜狠狠色综合中国| 国产精品久久午夜| 国产成人综合网站| 久久夜色精品国产噜噜av | 国产调教视频一区| 国产一区二区在线电影| 日韩一级黄色大片| 亚洲一区在线观看免费| 91浏览器在线视频| 中文字幕精品一区| 国产精品99久久久久久宅男| 欧美一二三区在线| 免费观看在线色综合| 欧美日本乱大交xxxxx| 一区二区在线看| 色94色欧美sute亚洲线路二| 亚洲图片欧美激情| av男人天堂一区| 国产精品国产三级国产普通话99 | 综合自拍亚洲综合图不卡区| 成人av影院在线| 中文字幕在线一区免费| 99久久免费精品| 亚洲欧美国产77777| 91社区在线播放| 亚洲男女毛片无遮挡| 色婷婷av一区二区三区软件| 亚洲激情欧美激情| 欧美精品乱人伦久久久久久| 天天色综合成人网| 欧美一区二区三区公司| 精品一区二区三区在线播放视频| 精品国产乱码久久久久久1区2区| 国产麻豆精品在线| 国产精品久久久久国产精品日日| 91美女片黄在线观看| 午夜精品爽啪视频| 欧美电影免费观看高清完整版在线 | 免费精品视频在线| 精品精品欲导航| 国产精品88av| 国产精品黄色在线观看| 欧美无乱码久久久免费午夜一区 | 天天av天天翘天天综合网色鬼国产| 在线电影欧美成精品| 激情综合网天天干| 亚洲国产成人自拍| 在线观看网站黄不卡| 蜜臀av一区二区| 国产精品久久一卡二卡| 欧美中文字幕久久| 国产一区二区三区在线看麻豆| 国产精品久久久久久久久快鸭| 欧美最猛性xxxxx直播| 美女视频一区二区三区| 国产精品久久99| 日韩一级欧美一级| 一本到高清视频免费精品| 免费日本视频一区| 亚洲柠檬福利资源导航| 精品少妇一区二区三区在线视频| 99天天综合性| 国产一区二区三区四区五区入口| 亚洲日韩欧美一区二区在线| 日韩欧美中文字幕精品| 色综合久久久久综合体| 国内精品国产三级国产a久久| 亚洲免费观看在线观看| 久久综合网色—综合色88| 欧美视频一区二区三区| 国产91精品久久久久久久网曝门| 日韩精品一二三四| 亚洲欧美日韩国产成人精品影院| 精品理论电影在线观看| 欧美午夜精品电影| eeuss鲁片一区二区三区| 麻豆精品视频在线观看免费| 亚洲欧洲精品成人久久奇米网| 欧美成人精品福利| 欧美高清视频在线高清观看mv色露露十八| 成人爽a毛片一区二区免费| 蜜桃免费网站一区二区三区| 一卡二卡三卡日韩欧美| 中文字幕一区在线观看| 国产三级欧美三级日产三级99| 91精品国产综合久久精品| 欧美三级视频在线| 色综合久久88色综合天天6| 岛国精品在线播放| 国产福利一区二区| 久久99最新地址| 美腿丝袜亚洲三区| 免费不卡在线观看| 日韩av高清在线观看| 亚洲国产日韩在线一区模特| 依依成人精品视频| 亚洲欧美视频在线观看视频| 国产精品色呦呦| 韩日欧美一区二区三区| 人人精品人人爱| 麻豆国产精品777777在线| 琪琪一区二区三区| 麻豆精品视频在线观看| 久久精品72免费观看| 精品无人区卡一卡二卡三乱码免费卡| 免费高清视频精品| 久久99久久99| 国产精品18久久久久久久久| 国产高清不卡二三区| 成人性色生活片| 91亚洲资源网| 欧美日韩综合在线| 5566中文字幕一区二区电影| 欧美一级日韩一级| 精品国产91久久久久久久妲己| 精品成人一区二区三区四区| 久久久蜜桃精品| 欧美极品aⅴ影院| 亚洲品质自拍视频| 亚洲电影在线播放| 另类综合日韩欧美亚洲| 国产一区在线看| 91在线国内视频| 欧美日韩精品一区二区天天拍小说| 在线观看国产精品网站| 欧美三日本三级三级在线播放| 7777精品伊人久久久大香线蕉超级流畅 | 欧美视频在线一区二区三区| 欧美日本在线一区| 日韩精品专区在线影院观看| 国产日韩精品久久久| 一区二区三区国产精华| 免费观看在线色综合| 丰满白嫩尤物一区二区| 欧美中文字幕不卡| 久久亚洲影视婷婷| 樱桃视频在线观看一区| 蜜桃视频第一区免费观看| 成人教育av在线| 7777精品伊人久久久大香线蕉完整版 |