欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

您的位置:中國博士人才網 > 博士后招收 > 海外博士后招收 > 英國牛津大學2022年招聘博士后職位(機器學習)

關注微信

英國牛津大學2022年招聘博士后職位(機器學習)

時間:2022-09-20來源:中國博士人才網 作者:佚名

Research Associate

University of Oxford

Description

Research Associate

Department of Biology, 11a Mansfield Road, Oxford, OX1 3SZ and Department of Statistics, 24-29 St Giles', Oxford, OX1 3LB

We are seeking to appoint a Research Associate in Machine Learning with a specialism in natural language understanding or information retrieval. The Research Associate will engage in internationally leading research in the analysis of heterogeneous text-based data at scale; he/she will bring state of the art machine learning to the heart of nature recovery, specifically to track the rapidly evolving field via published scientific articles or web- based text reports. The Researcher will achieve this by advancing state-of-the art deep learning techniques for text analysis and summarization.

The researcher will work in a team of machine learning experts within the Leverhulme Centre for Nature Recovery. The Leverhulme Centre for Nature Recovery (LCNR) is being established to address the challenges of deploying nature-based solutions and delivering effective nature recovery at scale in a way that addresses climate change, supports biodiversity and enhances human wellbeing. In particular, as a Research Associate in Machine Learning for Nature Recovery working closely with the Nature-based Solutions Initiative (Department of Biology), you will be collaborating with a team of multidisciplinary researchers to mine the evidence base for the effectiveness of nature-based solutions to climate change mitigation and adaptation (see www. naturebasedsolutionsevidence.info). Your work will produce state-of-the- art methodologies and algorithms that identify effective ways of working with natural ecosystems within the published literature, track sentiment towards restoration initiatives and filter key scientific reports. Outputs will form the basis of guidance and tools for decision-makers and land managers. Currently, it is hard for decision makers to access the best evidence, partly because that evidence is scattered among 1000s of journals and across several disciplines. Manual systematic reviews are extremely time-consuming and, as a result, poor decisions are being made that affect our futures. Deployment of ML approaches to speed up this process is urgently needed.

You will prepare and publish in high quality academic publications and regularly write and publish articles in peer-reviewed journals and conferences. You will participate actively in research within the LCNR and the Nature-based Solutions Initiative, developing collaborations with others. You will contribute to teaching, including undergraduate and MSc/MPhil courses within the Department of Statistics.

The successful candidate must hold, or be close to completion of, a relevant PhD/DPhil with, ideally, post-qualification research experience in machine learning or statistics with a specialism in natural language understanding or information retrieval. You must have a strong academic publication record concomitant with your experience, and familiarity with the existing literature and research in natural language understanding machine learning. You will have sufficient specialist knowledge to develop novel research questions and methodologies.

The University of Oxford is committed to equality and valuing diversity. All applicants will be judged on merit, according to the selection criteria.

This post is full time and available immediately.

The closing date for applications is 12.00 noon on 28th October 2022, interviews are likely to be scheduled for the week commencing 21st November 2022.

Contact Person: HR Vacancy ID: 159809 Contact Phone: Closing Date &Time: 28-Oct-2022 12:00 Pay Scale: STANDARD GRADE 7 Contact Email: HR@biology.ox.ac.uk Salary (£): Grade 7: £34,308 - £42,155 per annum

為防止簡歷投遞丟失請抄送一份至:boshijob@126.com(郵件標題格式:應聘職位名稱+姓名+學歷+專業+中國博士人才網)

中國-博士人才網發布

聲明提示:凡本網注明“來源:XXX”的文/圖等稿件,本網轉載出于傳遞更多信息及方便產業探討之目的,并不意味著本站贊同其觀點或證實其內容的真實性,文章內容僅供參考。

欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

      
      

          国产在线精品一区二区不卡了 | 国产一区二区视频在线播放| 一区二区三区毛片| 久久精品亚洲精品国产欧美kt∨| 日韩欧美一区二区视频| 在线播放国产精品二区一二区四区| 色诱亚洲精品久久久久久| 在线电影院国产精品| 91国内精品野花午夜精品| 色婷婷亚洲精品| 欧美日韩国产综合一区二区 | 国产另类ts人妖一区二区| 国产精品91xxx| 国产激情视频一区二区三区欧美| 国产成人亚洲综合a∨婷婷图片 | 精品999久久久| 国产午夜精品在线观看| 欧美国产激情一区二区三区蜜月| 国产精品系列在线| 一区二区三区中文免费| 香港成人在线视频| 国产一区中文字幕| 91丨九色丨国产丨porny| 欧美视频在线观看一区| 日韩免费福利电影在线观看| 国产欧美一区二区三区网站| 亚洲免费高清视频在线| 日本亚洲天堂网| 成人午夜av在线| 欧美日韩性生活| 久久久影院官网| 一区二区三区久久久| 精品在线观看免费| 97久久超碰国产精品| 日韩一区二区精品葵司在线| 国产精品午夜在线| 日韩1区2区3区| 97se亚洲国产综合自在线观| 欧美日韩精品一区二区三区 | 亚洲欧洲制服丝袜| 一二三四社区欧美黄| 久久99精品国产麻豆婷婷| 成人免费av网站| 日韩一区二区高清| 最新不卡av在线| 韩国av一区二区三区四区 | 亚洲一区二区三区美女| 蜜臀av国产精品久久久久| 成人av在线一区二区| 欧美精品第一页| 成人免费一区二区三区视频 | 国产69精品久久久久777| 亚洲国产精品ⅴa在线观看| 亚洲一区欧美一区| 国内不卡的二区三区中文字幕 | 91视频观看视频| 久久久精品欧美丰满| 爽好多水快深点欧美视频| 99国产欧美另类久久久精品| 久久久精品国产99久久精品芒果 | 91精彩视频在线| 中文一区在线播放| 韩国精品在线观看| 91精品国产色综合久久不卡电影| 一区二区三区在线观看欧美| 成人精品视频.| 久久久久久免费网| 理论电影国产精品| 91精品国产高清一区二区三区 | 亚洲小说欧美激情另类| 成人网男人的天堂| 欧美国产精品v| 国产成人自拍网| 精品国产凹凸成av人导航| 日韩av中文字幕一区二区三区| 91高清视频免费看| 亚洲午夜免费福利视频| 欧美日韩在线播放| 色哟哟亚洲精品| 91影院在线免费观看| 欧美精品久久久久久久久老牛影院| 国产欧美一区二区三区鸳鸯浴| 麻豆精品在线看| 欧美区一区二区三区| 亚洲妇女屁股眼交7| 色8久久精品久久久久久蜜| 亚洲黄色性网站| 欧美日韩激情在线| 亚洲图片一区二区| 精品视频一区二区不卡| 婷婷六月综合亚洲| 欧美电影免费观看高清完整版 | 不卡大黄网站免费看| 亚洲三级理论片| 欧美日韩一区 二区 三区 久久精品 | 国产乱淫av一区二区三区| 欧美电影免费观看高清完整版在线| 亚洲午夜电影网| 欧美一区二区观看视频| 免费观看一级欧美片| 精品99999| 成年人国产精品| 亚洲精品国产精品乱码不99| 欧美色综合天天久久综合精品| 性感美女极品91精品| 91精品国产综合久久蜜臀| 久久99国产乱子伦精品免费| 国产欧美一区二区精品忘忧草| 91美女视频网站| 日韩av一级电影| 中文字幕av免费专区久久| 91在线视频官网| 视频一区二区国产| 国产日韩欧美麻豆| 色综合久久综合中文综合网| 午夜激情久久久| 国产午夜精品久久久久久久| 欧洲av一区二区嗯嗯嗯啊| 久久精品国产网站| 亚洲视频在线一区| 日韩久久免费av| 91丨porny丨户外露出| 开心九九激情九九欧美日韩精美视频电影| 国产女人18水真多18精品一级做 | 视频一区欧美日韩| 国产亚洲欧美色| 欧美性受极品xxxx喷水| 国产一区二区三区综合| 一区二区三区欧美视频| 欧美v亚洲v综合ⅴ国产v| 色综合亚洲欧洲| 欧洲一区二区av| 久久国产人妖系列| 亚洲综合久久久| 国产精品美女久久久久久2018 | 亚洲精品免费看| 国产片一区二区三区| 51午夜精品国产| 97久久超碰国产精品| 国产一区二区三区蝌蚪| 午夜视频一区在线观看| 亚洲女同ⅹxx女同tv| 国产偷国产偷精品高清尤物| 日韩一区二区精品| 欧美人妖巨大在线| 色88888久久久久久影院按摩| 成人免费高清视频在线观看| 理论片日本一区| 婷婷久久综合九色国产成人| 亚洲精品欧美激情| 最新日韩在线视频| 国产日韩欧美高清| 精品99久久久久久| 日韩三级视频在线看| 欧美蜜桃一区二区三区| 欧美在线观看一区二区| 色综合久久久久久久| av亚洲精华国产精华| 成人a级免费电影| 国产v综合v亚洲欧| 成人美女视频在线观看| 福利91精品一区二区三区| 国产一区美女在线| 国产一区二区三区在线看麻豆| 麻豆精品视频在线观看视频| 日本视频在线一区| 久久99深爱久久99精品| 精品无码三级在线观看视频| 裸体健美xxxx欧美裸体表演| 免费成人结看片| 国产综合久久久久久久久久久久| 精品一二三四区| 激情都市一区二区| 国产91丝袜在线观看| 成人免费视频一区| 91在线观看下载| 日本道精品一区二区三区| 欧美色图一区二区三区| 欧美日韩高清一区二区| 日韩一区二区三区电影| 久久久精品一品道一区| 最新高清无码专区| 午夜电影网一区| 精品一区二区三区视频在线观看 | 91成人免费电影| 7777女厕盗摄久久久| 精品区一区二区| 国产精品区一区二区三| 亚洲国产欧美在线| 激情五月婷婷综合| 99精品在线免费| 69精品人人人人| 国产亚洲欧洲997久久综合| 亚洲激情五月婷婷| 久久99久久99精品免视看婷婷| 成人免费观看视频| 欧美色偷偷大香| 国产日韩欧美高清在线| 亚洲成人自拍偷拍| 成人三级在线视频|